Robust design of multilayer feedforward neural networks: an experimental approach

نویسندگان

  • Young-Sang Kim
  • Bong-Jin Yum
چکیده

Artificial neural networks (ANN’s) have been successfully used for solving a wide variety of problems. However, determining a suitable set of structural and learning parameter values for an ANN still remains a difficult task. This article is concerned with the robust design of multilayer feedforward neural networks trained by backpropagation algorithm (Backpropagation net, BPN) and develops a systematic, experimental strategy which emphasizes simultaneous optimization of BPN parameters under various noise conditions. Unlike previous works, the present robust design problem is formulated as a Taguchi’s dynamic parameter design problem, together with a fine-tuning of the BPN output when necessary. A series of computational experiments are also conducted using the data sets from various sources. From the computational results, statistically significant effects of the BPN parameters on the robustness measure (i.e., signal-to-noise ratio) are identified, based upon which an economical experimental strategy is derived. It is also shown that fine-tuning the BPN output is effective in improving the signal-tonoise ratio. Finally, the step-by-step procedures for implementing the proposed approach are illustrated with an example.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-View Face Detection in Open Environments using Gabor Features and Neural Networks

Multi-view face detection in open environments is a challenging task, due to the wide variations in illumination, face appearances and occlusion. In this paper, a robust method for multi-view face detection in open environments, using a combination of Gabor features and neural networks, is presented. Firstly, the effect of changing the Gabor filter parameters (orientation, frequency, standard d...

متن کامل

Evolutionary Design of Constructive Multilayer Feedforward Neural Network

This paper proposes an evolutionary design methodology of multilayer feedforward neural networks based on constructive approach. We elaborate an adjustable processing element as primitive neuron model. The neural layer can be constructed by assembling several neurons. The multilayer neural network can be finally constructed through cascading several neural layers. The constructive approach faci...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

Smart Antenna Design Using Neural Networks

Optimizing antenna arrays to approximate desired far field radiation patterns is of exceptional interest in smart antenna technology. This paper shows how to apply artificial intelligence, in the form of neural networks, to achieve specific beam-forming with linear antenna arrays. Multilayer feed-forward neural networks are used to maximize multiple main beams’ radiation of a linear antenna arr...

متن کامل

The Mixture of Neural Networks Adapted to Multilayer Feedforward Architecture

The Mixture of Neural Networks (MixNN) is a Multi-Net System based on the Modular Approach. The MixNN employs a neural network to weight the outputs of the expert networks. This method decompose the original problem into subproblems, and the final decision is taken with the information provided by the expert networks and the gating network. The neural networks used in MixNN are quite simple so ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Eng. Appl. of AI

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2004